Recursion and Explicit Formulas for Particular N-Variable Knop-Sahi and Macdonald Polynomials

نویسنده

  • Jennifer Morse
چکیده

Knop and Sahi simultaneously introduced a family of non-homogeneous, non-symmetric polynomials, Gα(x; q, t). The top homogeneous components of these polynomials are the non-symmetric Macdonald polynomials, Eα(x; q, t). An appropriate Hecke algebra symmetrization of Eα yields the Macdonald polynomials, Pλ(x; q, t). A search for explicit formulas for the polynomials Gα(x; q, t) led to the main results of this paper. In particular, we give a complete solution for the case G(k,a,...,a)(x; q, t). A remarkable by-product of our proofs is the discovery that these polynomials satisfy a recursion on the number of variables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bivariate Knop-Sahi and Macdonald polynomials related to q-ultraspherical functions

ABSTRACT: Knop and Sahi introduced a family of non-homogeneous and nonsymmetric polynomials, Gα(x; q, t), indexed by compositions. An explicit formula for the bivariate Knop-Sahi polynomials reveals a connection between these polynomials and q-special functions. In particular, relations among the q-ultraspherical polynomials of Askey and Ismail, the two variable symmetric and non-symmetric Macd...

متن کامل

Some Classical Expansions for Knop-sahi and Macdonald Polynomials

In recent simultaneous work, Knop and Sahi introduced a non-homogeneous non-symmetric polynomial Gα(x; q, t) whose highest homogeneous component gives the non-symmetric Macdonald polynomial Eα(x; q, t). Macdonald shows that for any composition α that rearranges to a partition λ, an appropriate Hecke algebra symmetrization of Eα yields the Macdonald polynomial Pλ(x; q, t). In the original papers...

متن کامل

A Combinatorial Formula for Non-symmetric Macdonald Polynomials

We give a combinatorial formula for the non-symmetric Macdonald polynomials Eμ(x; q, t). The formula generalizes our previous combinatorial interpretation of the integral form symmetric Macdonald polynomials Jμ(x; q, t). We prove the new formula by verifying that it satisfies a recurrence, due to Knop and Sahi, that characterizes the non-symmetric Macdonald polynomials.

متن کامل

2 9 N ov 2 00 6 A COMBINATORIAL FORMULA FOR NON - SYMMETRIC MACDONALD POLYNOMIALS

We give a combinatorial formula for the non-symmetric Macdonald polynomials E µ (x; q, t). The formula generalizes our previous combinatorial interpretation of the integral form symmetric Macdonald polynomials J µ (x; q, t). We prove the new formula by verifying that it satisfies a recurrence, due to Knop and Sahi, that characterizes the non-symmetric Macdonald polynomials.

متن کامل

1 2 Fe b 20 07 A COMBINATORIAL FORMULA FOR NON - SYMMETRIC MACDONALD POLYNOMIALS

We give a combinatorial formula for the non-symmetric Macdonald polynomials E µ (x; q, t). The formula generalizes our previous combinatorial interpretation of the integral form symmetric Macdonald polynomials J µ (x; q, t). We prove the new formula by verifying that it satisfies a recurrence, due to Knop and Sahi, that characterizes the non-symmetric Macdonald polynomials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 88  شماره 

صفحات  -

تاریخ انتشار 1999